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Generalized Dispersion Analysis and Spurious
Modes of 2-D and 3-D TLM Formulations

John S. Nielsen, Member, IEEE, and Wolfgang J. R. Hoefer, Fellow, IEEE

Abstract—The general dispersion relations are derived for the
2-D TLM shunt and series meshes and the 3-D TLM expanded
and condensed node meshes. Implicit in the resulting dispersion
relations are both their physical and spurious modal solutions. It
is demonstrated that of the four schemes, only the 3-D expanded
node mesh is free of detrimental spurious solutions.

I. INTRODUCTION

N terms of numerical dispersion effects, the Transmission

Line Matrix (TLM) method is similar to Finite Difference
Time Domain (FD-TD) and Finite Element (FE) methods
based on approximations of the single curl Maxwell equations.
A review of the numerical dispersion and spurious modes
supported by the FD-TD and FE methods is given by [1] and
[2]. Significant effort has been expended on the development
of spurious free FE algorithms. A recently proposed method
was given by Boyse et al. [3].

The Transmission Line Matrix (TLM) method, originally
developed by Johns [4], is a means of simulating the time
domain solution of electromagnetic fields by a procedure of
recursive calculations that are updated at regular time intervals.
It can be demonstrated that these recursive relations are
equivalent to a finite difference approximation of Maxwell’s
equations [5]-[7].

The work of Brewitt—Taylor and Johns [8] was brought to
our attention by the reviewer, as the original analysis of the
dispersion characteristics of the TLM mesh. A limitation of
this analysis procedure is that an equivalent circuit model of
the TLM node is required. As a practical equivalent circuit
model for the 3-D symmetrical condensed node has not been
developed, the general dispersion relation was not derived
except for special cases such as propagation along the axis
or diagonal [9]. The general dispersion relation was later
derived by Nielsen and Hoefer [10], which further led to the
characterization of spurious modes of the condensed node [11].

In this paper, a method is described which enables the dis-
persion relation of an arbitrary TLM node to be derived based
on the scattering matrix of the node without the requirement of
an equivalent circuit. This method has been used to evaluate
the dispersion and spurious solutions of commonly used TLM
meshes. In the following sections, the dispersion relation and
spurious modes will be evaluated for the 2-D shunt node,
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II. TYPES OF SPURIOUS MODES

The TLM mesh consists of an array of scattering nodes
that are interconnected by transmission line links. Throughout
this paper, the node spacing in all directions is assumed to be
constant and equal to d. The propagation constant along the
transmission lines is k,, which is given by

_ 2,

ko = q!
Vlink D

where f, is the excitation frequency and vk is the velocity
along the transmission link lines. The numerical dispersion
of the mesh, at a given excitation frequency, is reduced by
decreasing k,d through mesh refinement [9)]. As the numerical
dispersion is decreased, the overall field solution will typically
converge to the physical solution. However, due to the spatial
and temporal sampling process, propagating spurious mocles
may be supported. These spurious modes will, to some extent,
corrupt the simulated field solution. Various types of spurious
modes can be identified. These have been arbitrarily classified
under four types for convenience as follows:

Temporal Spatial TLM Mesh Supporting
Type Frequency Frequency Spurious Mode Type
1 0 all 2-D series and shunt
high 3-D condensed
2 kod=w all 2-D series and shunt
low 3-D condensed
3 kod < /2 high 3-D condensed
high
4 kod >=7/2 0 3-D expanded

The nature of these spurious solutions will become evident as
examples are given.

Since the TLM method is only accurate for low values of
k.d, it is generally not applied to problems where k,d exceeds
about 0.25. Hence, low-pass temporal filtering of embedded
sources can be used to suppress the spurious solutions of
types 2 and 4. Spurious solutions of type 1 can be controlled
by careful attention to initial conditions and placement of
sources and lumped devices within the mesh as will be
discussed further. Type 3 is particularly troublesome and is
unfortunately supported by the 3-D condensed node mesh.
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Types 1 and 3 will be referred to in this paper as “low-
frequency spurious modes.”

III. 2-D TLM SHUNT NODE

The 2-D shunt node sketched in Fig. 1(2) can represent three
field components, for example, E,, H;, and H,. The shunt
node is formed by the intersection of two transmission lines
of characteristic admittance Y. V;f and Vp’" are defined as the
incident and reflected voltages at the node, where p denotes
the transmission line number as indicated in Fig. 1. V* and
V7 are defined as the vectors of V;} and V;‘, respectively, as

Vi 144

T __ V2z T __ V2r
V= v V"= v | 2

Vi Vi

V¥ and V" are related through a scattering matrix S as
V' =SV, 3)

S is derived directly from the transmission line equivalent in
Fig. 1(a) as

1 1 1 1
1{1 -1 1 1

S‘? 1 1 -1 1 )
1 1 1 -1

The node scattering matrices for the TLM nodes are frequency
independent and therefore applicable to continuous harmonic
signals as discussed in [12]). If the transmission lines are
approximated by lumped inductors and capacitors, as illus-
trated in Fig. 1(b), then a set of coupled differential equations
results

v, al,

Y L, %
Bz tink ¢ (52)
av, oI,
Be iy ()
oI, oI, oV,
52 T or 2C%ink ot (5¢)

where Vy, I;, and I, are indicated in Fig. 1(b). Lijnx and Clink
are defined as the inductance and capacitance of the link line
per unit length, respectively. It is readily observed that if the
following equivalences are made:

Vy I L
= ——F Hz = - T =
E, R Fi Hy = —
1 = Ly, € = 2Chink ©)

then (4) reduces to Maxwell’s equations for the TE case
where
a J—
oy
The dispersion relation is based on evaluating the voltage
at a particular node, denoted as node ¢, in relation to the
voltages of the four adjacent nodes which are at a distance
d from node c. Let V. denote the total voltage amplitude at

node ¢, and let V, denote the voltage at the adjacent node
attacked to node c through the transmission line p as shown

E,=E,=H,=0, 0.
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Fig. 1. 2-D TLM shunt node. (a) Node structure. (b) Equivalent LC

network.

in Fig. 1(a). The dispersion relation is based on determining
the interdependence between node voltages V. and V).
V, is composed of incident and reflected voltages such that

V=V ™

where Vp’" is the incident voltage flowing from the adjacent
node, and V;,T’ is the reflected voltage flowing toward the
adjacent node on the pth link line.

The dispersion relation is developed at a single excitation
frequency such that

vy =T,V (8a)

‘/;'/ — To‘/pr (Sb)
where T, is given as

T, = e~ ked )

where k, is the propagation constant along the link lines
defined in (1). Furthermore V/, V¥, and V"' are defined as
vector forms of V), V/, and V", respectively.

Defining T as

T=T,1 (10)
where I is an identity matrix, we can write
VisVR4p VT =T WL TV = (T + TS)V".
(11)

Using (3), V. can be expressed as

4
1 r 1 1
Ve=Vi+W =53V, (12)
p=1

Finally, substituting (11) into (12), we obtain an equation
relating V. to V;f as

4V, cos(kod) = V{ + V3 + V4 + V. (13)
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Useful solutions to (13) are obtained by assuming an infinite
2-D mesh where the voltage across the node located at z = id
and z = kd has an amplitude of

‘/i,k — Aoe—jkmdie—jkzdk (14)
where k, and k, are the unknown components of the mesh
propagation vector, and A, is an arbitrary constant. By sub-
stituting this solution into (13), the desired dispersion relation
is obtained as

2 cos(kod) = cos(k.d) + cos(k.d). 15)

In assuming the solution of the form in (14), monochromatic
excitation of the mesh is implied. The resulting dispersion rela-
tion is thus valid for monochromatic fields but not necessarily
for time sampled fields composed of propagating impulse
functions as is encountered in TLM. However, it can be shown
that if k,d < , then the dispersion relation is the same for
a monochromatic signal as for a time sampled version of the
monochromatic signal [12].

Equation (15) can be compared to the two known dispersion
relations of the shunt TLM mesh in the direction along the
x- or z-axis and along the diagonal x = 2. Consider first
the case where k,d = 0 which represents propagation along
the z-axis. Equation (15) becomes

2cos(k,d) — 1 = cos(k,d) (16)
which can be manipulated into a different form
cos(k.d) = cos(kod) — tan(k,d/2)sin(k.d)  (17)

which appears in [9].
Consider next the case when the propagation is along the
diagonal line z = z by setting k,d = k.d. Using (15),

cos(kod) = cos(kyd) = cos(k,d)

or k.d = K,d = k,d. Consequently, the effective propagation
constant along = = z is nondispersive and is given by 1/2k,
which is in agreement with [9].

A final observation is that (15) can also be written in the
form

sin2<k;d) = %(sin{%) + sin2(%—(-i)) (18)

which is exactly the same as the dispersion relation of the
2-D FD-TD method with a stability factor of 1/+/2 [2]. This
equivalence between the 2-D FD-TD and 2-D TLM method
has also been pointed out by Simons and Bridges [13].

Fig. 2 shows a plot of the dispersion relation (15) for
various values of k,d. Note that the curves are approximately
circular for low values of k,d, indicating negligible numerical
dispersion. As k,d increases, the circles become distorted.
When k,d reaches (1/2)w, the dispersion curve becomes a
line given by kyd+k.d = w. To avoid errors due to numerical
distortion, k,d is typically limited to less than 0.25.

Although spurious solutions in (15) are not evident, they do
exist. Consider a shunt node surrounded by four conducting
walls. Assume an incident voltage at the node given by
Vi = [1,-1,1,-1]T. From (3) and (4), V" = -V*. As
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Fig. 2. Plot of the numerical dispersion of the shunt node for various values
of kod.

the reflection coefficient of the conducting boundary is —1,
V* does not change in the next time interval. Hence, this
case corresponds to the eigensolution of k,d = k,d = 7 and
kod = 0, which is a type 1 spurious mode. This solution was
not predicted by (15) since V. = 0, which can be seen by
considering (12).

To obtain the complete dispersion relation, the eigenmalrix
equation for V* is derived. Assuming a solution in the form of
(14) and using the port designations in Fig. 1(a), V"' can be
related to V* through a transformation matrix P as follows:

V" = PV* (19)
with
0 0 T, o
0o 0 o Tt
P = T, 0 0 0
0 7. © 0
where T, = exp(—jk.d) and T, = exp(—jk.d). Also,
V*=TV" =TSV". (20)

By combining (19) and (20), an eigenmatrix relation is ob-
tained as

(P-TS)Vi=0 (21)

with the corresponding dispersion relation given as det[P.S —
t] =0, as S = S™'. Equation (21) can be written to highlight
the eigenvalue T, as

PSVi=T,V*.

Hence, the solutions of k,d are related directly to the eigen-
values of the matrix PS. A plot of the eigenvalues of
PS8 is shown in Fig. 3 for all real values of k,d and k.d.
There are generally four unique eigenvalues. There is always
an eigenvalue at 7, = 1 and 7, = -1 corresponding
to kod = 0 and k,d = , respectively. These solutions
correspond to spurious mode types 1 and 2, respectively. In
addition, there are solutions of the form T, = exp(—j6) and
T, = exp(j0), with 8 being real which correspond to the
solutions of k,d given by (15). These are called the “physical
solutions” in Fig. 3. The eigenvectors of V" corresponding to
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Fig. 3. Physical and spurious eigen-solutions of the shunt node in the T
plane.

the eigenvalues T, = 1 depend on k;d and k.d such that
Vi4+V2+Vi+V} = 0and, hence, V. = 0. V* = [1,-1,1, 1]
given above is an example of the eigen vector for T, = 1.
There are no spurious modes of types 3 and 4.

Since the TLM network is linear, only sources that excite
frequency components corresponding to ko,d = 0 or kod = 7
can couple into the spurious modes supported by the shunt
node. As high-frequency excitation is avoided by bandlimiting
sources, only dc sources can pose a problem. Sources that
shunt the node will not couple to the dc spurious mode due
to symmetry arguments. However, sources placed in the series
into the link lines can potentially couple to the type 1 spurious
mode.

IV. 2-D TLM SERIES NODE

The 2-D series node is sketched in Fig. 4(a) and can
represent three field components of TM modes, namely, E.,
E., and H, [9]. The series node is formed by a series
connection of two intersecting transmission lines of admittance
Y, resulting in a node scattering matrix of

1 1 1 -1
11 1 -1 1

S=511 21 1 1 (22)
-1 1 1 1

If the transmission lines are approximated by lumped in-
ductors and capacitors as illustrated in Fig. 4(b), then a pair
of coupled differential equations emerges as

al, v,
—a? = Cllnk 8t (233_)
aI, v,
B = Chink v (23b)
8V, oV, al,
B: T oa kg 23

where I, V., and V, are indicated in Fig. 4(b). If the following
equivalences are made:

I V. V.
g gp_-_% Ve
Y d ? d ? E d )
= 2Ljnk, €z,> = Clink, 24)
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Fig. 4. 2-D TLM series node. (a) Node structure. (b) Equivalent circuit.

then (23) reduces to Maxwell’s equations for the TM case
with
a pu—
dy
The derivation of the dispersion relation for the series node
is similar to the derivation followed for the shunt node. The
current at the center of a series node c is related to the currents
at the center of the four adjacent nodes as illustrated in Fig. 5.
At the center of the adjacent nodes, the currents are denoted
as J; where again p denotes the link line number. I, is the
value of the current flowing around the center series node in
the direction indicated in Fig. 5. J’, defined as the vector of
J;,, can be written as

H,=H,=F, =0 0.

J =Y, (VY -V"). (25)
Hence,
J =Y,(T™' -TS)V*. (26)
The current I, can be written in terms of V;* and V3 as
I:Yo(Vf—Vf):%(vi—vé—v§+vi). 27
Introducing (26) in (27) yields
4I.cos (kod) = (J; — J§y — J4 + Jy) . (28)

As for the shunt node, the desired dispersion relation is
obtained by assuming a solution of the form

Lip = Agedhedig=dkedk, (29)

Substituting this solution into (27) results in the dispersion
relation

2cos(kod) = cos(kyd) + cos(k,d) (30)
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Fig. 5. Variables used in the derivation of the dispersion relation of the 2-D
series node.

which is identical to the dispersion relation of the shunt node
in (15).

As for the shunt node, there are additional spurious modes
that are not visible by the dispersion relation. For example,
consider the case with a series node surrounded by magnetic
walls and an incident voltage vector of V* = [1,1,1,1]. As
observed, this results in a self-consistent solution yielding
I. = 0. This solution is predicted from the eigenvalues and
eigenvectors of P.S as in the shunt node case resulting in the
same set of four eigenvalues at +1, exp(j6) and exp{—j6),
where 6 corresponds to the values of k,d obtained from the
dispersion relation (30).

V. EXPANDED 3-D TLM NODE

Akhtarzad and Johns [14] arranged the TLM series and
shunt nodes in an interlaced arrangement resulting in the 3-D
expanded node as illustrated in Fig. 6. The term “expanded” is
used since the evaluated field components are not collocated.
Each cell of the expanded node consists of three shunt nodes
representing the E,, E,, and F, fields and three series nodes
representing the H,, H,, and H, fields. The spacing between
the series and shunt nodes is d/2, and the overall cell size
is d. The incident voltages converging on the shunt nodes
are scattered at interval time steps, and the incident voltages
converging on the series nodes are scattered half a time step
later. Hence, the £ and H fields are not updated at the same
time but at half-time step intervals as in Yee’s FD-TD scheme
[15]. It was demonstrated by Johns [S] and by Voelker and
Lomax [6] that the expanded TLM node is analogous to
Yee’s FD-TD node, except that the expanded node has twelve
independent variables associated with each node, whereas
Yee’s scheme has six.

As discussed by Paulsen [1], Yee’s 3-D FD-TD scheme
[15] is free of spurious solutions. This is a somewhat sur-
prising property, which is attributed to the staggered mesh
configuration. The additional variables associated with the
expanded TLM node result in supported spurious modes as
will be demonstrated. However, these spurious modes are of
type 4 which can be easily suppressed by temporal filtering.
The expanded node does not support low-frequency spurious
modes of types 1 or 3. This is an important advantage of the
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Fig. 6. 3-D TLM expanded node indicating location of sampled field
quantities.

expanded node over the condensed node which does support
the propagation of low-frequency spurious modes.

Two derivations of the dispersion relation were per-
formed—one based on the voltages at the shunt nodes and the
other on the currents at the series nodes. As these derivations
are similar, details will only be given for the voltage based
dispersion relation. Both approaches result in the same overall
dispersion relation. By considering both derivations, it will be
shown that there are no low-frequency spurious modes.

The voltages of the expanded node, V, V,,, and V,, are
represented at the three shunt nodes of the unit cell, as shown
in Fig. 6. The three series nodes of the expanded node are
shown in Fig. 7 with z1, z2, T3, 4, Y1, Y2, Y3, Y4, 21, 22,
z3, and z4 defined as the voltages associated with these nodes.
The initial step of deriving the dispersion relation is to write
the voltages V,, V,, and V, at the shunt nodes, in terms of
the voltages of surrounding series nodes to which they are
connected. Using (13) and referring to Fig. 7, the following
relations are obtained:

Ve = Co(—ZgTy - ygTz_1 — 21— yl) (31a)
Vy = Co(zaTyt — 22T + 71 — 24) (31b)
V. = Co(yoTy ' + 74 + ya + 22T)) (310
where
1
C, =
4cos( kgd)
T, = e k=t
T, = ¢ kv
T, = ¢ Jk=d

Next, consider a single series node connected to four surround-
ing shunt nodes with V' as the vector of the port voltages at
the series node center, and V" as the vector of node voltages
at the ends of the interconnecting lines (at the center of the
shunt nodes). Define V* as the vector of voltages incident at
the series node centre. Consequently,

V = (T '+1TS)V* (32)

where S is the scattering matrix of the series node and T is
given as before with 7, redefined as

—2kod

T, = e 5 (33)
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Equation (32) yields
V=(I+8S)Vi=(I+8) (T +TS) V' =qQV’

(34)
where @ is given by
3 1 1 -1
1 3 -1 1
-1 1 1 3

The relations generated by the three series nodes are then

Ty Uy
z2 | _ o Tt
o | =@l o (362)
T4 Uy
[ Vg
Y2 V2 Tm
= 36b
Y3 Q —v, T, ( )
Y4 Vz
21 ~Vz
22| —vy Ty
23 - Q —y Ty——l (36C)
24 —~Uy

By combining (31) and (36), an eigenmatrix equation is
obtained as

37

The eigenmatrix A is a 3 x 3 matrix with entities a;; given
by

a11 = C2(12 +2C, +2C,) - 1

a1 = 4C2T}/T)/28, S,

a13 = 4C2 T2 128, 3,

as1 = 4C2T; 2T Y28, 8,

age = C2(12 + 2C, + 2C.) — 1

azs = 4C2T,/?T /28,8,

a3y = 4C2T; 1?1128, S,

asz = 4C2T,/*T}/28, 8,

azs = C2(12 + 2C, 4+ 2C,) — 1 (38)

where

Cy = cos(k,d)
Sy = sin(k,d/2)

Cy = cos(kyd)
Sy = sin(kyd/2)

C, = cos(k,d)
S, = sin(k,d/2).

Consider the case where only one electric field component,
namely, the E, field (or V,), is nonzero. Consequently, the
eigen value equation reduces to ayy = O such that the

dispersion relation becomes
4cos(kod) = 2+ cos(kyd) + cos(k,d) . 39)

For the special case where ky,d = 0, (39) reduces to the
dispersion relation given in [9] for propagation along the axis.
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Fig. 7. Definition of variables used in derivation of dispersion relation of
the 3-D expanded node. (a) H series node, (b) Hy series node, and (c) H,
series node.

The dispersion relation was derived again based on the
currents I, I, and I, at the series nodes. A similar procedure
was followed resulting in the eigenmatrix equation

(40)

where A is given in (38).

The eigenmatrix equations based on the shunt and series
node approaches in (37) and (40) do not reveal any low-
frequency spurious mode types. However, as with the shunt
and series nodes, this is not a sufficient condition for the
absence of spurious modes. However, the voltage and current
based dispersion relations can be used to demonstrate that there
are no spurious modes by the following argument.

First, as the voltage dispersion relation of (37) describes
no spurious modes, any spurious modes that exist must be
characterized by V,, V,,, and V, all equal to zero, such that
(37) does not apply. Second, as the current dispersion relation
of (40) describes no spurious modes, I, Iy, and I, must all
be zero for (40) not to apply. Combining these statements,
additional spurious modes are characterized by V,, Vs Vo,
I, I, I,, which are all equal to zero. Given this condition,
the port reflection coefficient into the shunt nodes must be
—1 and the reflection coefficients into the series ports must
be 1. Hence, all the interconnecting transmission lines are
effectively isolated with a short circuit at one end and an
open circuit at the other. As the link lines are d/2 long,
self-consistent solutions are possible only if k,d is of the set

kod =nm/2 n=135---.
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Fig. 8. 3-D TLM condensed node structure.

Since n = 0 is not part of the set, there are no low-frequency
spurious modes. However, high-frequency spurious modes
exist for n = 1 and n = 3.

VI. SYMMETRICAL CONDENSED 3D-TLM NODE

One disadvantage of the expanded node is that the six field
components are not collocated, nor are they updated at the
same time. This makes it difficult to impose arbitrary mixed
boundaries. This motivated Johns to develop a different 3-D
TLM node structure denoted is the “symmetrical condensed
node,” which consists of one central scattering center in each
cube of medium rather than a set of series and shunt nodes as
in the expanded node [16]. The node lattice is a cubic structure
with a node spacing of d. The condensed node, sketched in
Fig. 8, consists of twelve ports that connect to adjacent nodes.
There is no practical lumped element equivalent circuit of the
node itself.

The incident and reflected voltage in port p of the condensed
node is denoted as V;f and V', respectively, as before. V* and
V", the vector representations of the incident and reflected
voltages, are related through the node scattering matrix S
given by [16]. [See (41) at bottom of page]

The derivation of the dispersion relation for the condensed
node follows a procedure similar to that used for the shunt and
series nodes. An expression is written relating the port voltages
of a particular node in an infinite 3-D mesh, called node c,
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and the voltages of the six surrounding adjacent nodes at the
ports directly connected to node c¢. The dispersion relation
will be based on an eigenmatrix equation developed for Vi,
the voltage incident at the center node. A spatially harmonic
solution for V* is assumed such that

Vi = A e Tkedrg=ikydjg—iksdk

iy dy k

(42)

when 4, j, k are node indices and A, is a constant vector.

Given the node port numbering in Fig. 8, and assuming the
solution in (42), the reflected voltage at the adjacent ports can
be written as

V" =PV® (43)

where P is a 12 x 12 matrix with zero entries except for

Plia=Ps7=T,"
Prg=Pig =T, !
Psi1 = Pero=T;!
Prg=P1=T,
Psg=Pyp =T,
Pype=Pz=1,

where T, = exp(—jk.d), T, = exp(—jkyd), and T, =
exp(—7k.d). As in the case of the shunt node, the eigenmatrix
equation is given by

(PS-T)V'=0 (44)
which is of the same form as (21). Equation (44) can be
simplified for special cases such as propagation along a
diagonal or axis [12}; however, for the general case, no
simplification has been derived.

As for the shunt node, the eigenvalues of P S are explored.
For a given k. d, kyd, k.d there are six unique eigenvalues for
T, that are located on the unit circle as shown in Fig. 9. There
are solutions at k,d = 0 and k,d = m which correspond to
spurious solutions of type 1 and type 2 as seen in the case of
the 2-D shunt and series nodes. Given that k,d is a solution,
then, as indicated in Fig. 9, —k.d, 7 — kod, and 7 + k.d are

0 1 1 0 0
1 0 0 0 0

1 0 0 1 0

0o 0o 1 o0 1

0 0 0 1 0
g_1jo 1 0 o0 1
210 0o 0 -1 0
0o 0o 1 o0 -1

1 0 0 0 0

0 -1- 0 0 1

-1 0 0 1 0

0 1 -1 0 0

0 0 0 1 0 -1 0
1 0 0 0 -1 0 1
0 0 1 o o 0 -1
6 -1 0 0 0 1 0
1 0 -1 0 1 0 0
0 1 0 -1 0 0 0
1 0 1 0 1 0 0 (41)
0 1 6 o0 0 1 0
-1 0 0 0 1 0 1
0 1 0 1 0 0 0
0 © 1 0 0 O 1
0 0 0 1 0 1 0
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Fig. 9. Physical and spurious eigen-solutions of the 3-D condensed node in
the T, plane.

also solutions. These four solutions correspond to physical and
spurious solutions.

Insight into the properties of these solutions can be obtained
by considering the problem from another perspective, where
kod is given and the possible solutions of the propagation
vector that satisfy the dispersion relation are determined.

Consider the solutions for k.d, kyd, and k,d for a small
value of k,d. The solutions form a sphere with a radius of
approximately 2k,d. Due to the spatial sampling imposed by
the mesh along z, y, and z, the solution to the dispersion
relation is periodic along the k,d-, k,d-, and k,d-axis. That
is, if k,d, kyd, k,d are solutions of the dispersion relation for
a particular k,d, then

ked+1-27 1= +1,%£2,---
kyd+j-2m j==41,42,--.
k.d+k-2r k=+1,£2,-..

are also solution, Consequently, the solution sphere centered
around k.d = ky,d = k.d = 0 is replicated in a cubic node
pattern with a spacing of 2z. All these solution spheres do not
contribute to spurious modes but are merely a consequence of
spatial sampling. In addition to the above solutions, there is
also a solution sphere centered at k,d = kyd = k.d = 7 as
can be observed by finding the roots of the dispersion relation
(44). This represents the spurious propagating mode solutions.
As before, spurious solution spheres exist at intervals of 27 in
ked, k,d, and k,d, due to spatial sampling. The total solution,
assuming k,d is small, appears as a body-centered-cubic mode
structure as is shown in Fig. 10.

The consequences of spurious solutions can be visualized by
considering an infinite source plane in the xy plane radiating
into an infinite 3-D mesh. Assume that the source plane
generates a plane wave at a single frequency corresponding
to ko, and that it has a transverse dependence of k,x and
kyy. Using the dispersion relation, k.d can be evaluated for
the radiated plane wave. The propagation characteristics of the
radiated plane wave fall into one of four regions as outlined in
Fig. 11. The first region for small k,,d and k,d is the “physical
propagating modes” region. The propagating constant, &, d, for
these modes is real and close to the theoretical value of

kud = /(2 kod)? -

(ks d) — (ky d)?. 45)
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Fig. 10. Illustration of the solution spheres satisfying the dispersion equation
of the 3-D condensed node.
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Fig. 11.  Spectral regions corresponding to physical and spurious plane wave

mode propagation for the 3-D condensed node.

Assuming an excitation frequency such that k,d is small
relative to m, the boundary of this region is approximately
circular, with a radius of 2 k,d. As k,d increases, the boundary
will bulge slightly around the diagonal k,d = kyd.

The adjacent region is denoted as the “physical evanescent
modes” region which exhibits a purely imaginary k.d that
increases in magnitude with the modal index as expected
in actual waveguide modes. Near the physical mode cutoff
boundary, the imaginary part of k,d follows (45) accurately,
provided k,d is reasonably small.

The propagation constant for modes that lie along the
diagonal line given by

ked + kyd = 7

has a negative infinite imaginary component which indicates
no propagation at all. When crossing this line such that

kod + kyd > 7,

the real part of k.d jumps to 7. The modes in this region
are called the “spurious evanescent modes.” In this region, the
magnitude of the imaginary component of k.d decreases as
the mode index increases.

The boundary between the spurious evanescent and spurious
propagating modes is a mirror image of the boundary separat-
ing the physical propagating and evanescent modes, and is
located approximately on the curve given by

2hod = 1/ (7 — pd)® + (m — hyd)’

(46)
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Fig. 12. Plot of k.d as a function of krd with kod = 0.3 and kyd = k.d
[11].

The spurious propagating modes have a propagation constant
of approximately

kud o \[2hod = (= kpd)® — (m — kyd)® (47)
which is purely real, indicating lossless propagation. Note the
constant offset factor of . The upper sign in (47) denotes
the forward propagating spurious mode, and the lower sign
denotes the backward propagating mode.

Fig. 12 shows the real and imaginary parts of k.d as a
function of k.d for kzd = 0 to kyd = 7, with kyd = k,d.
In this example, k,d is chosen to be 0.3. For small values of
k.d, k,d is real until the cutoff point at k,d = 0.42. In the
plot of the real part of k.d, the theoretical solution of (45)
is superimposed and is indistinguishable from the curve given
by the dispersion relation (44). At k,d = m/2, the real part
of k,d jumps to a value of = 7. At the cutoff point of the
spurious mode, given by

k,d=m—-0.42,

the spurious mode begins to propagate.

Consider next the curve of the imaginary part of k.d
shown in Fig. 12. When k,d exceeds the cutoff point, the
mode becomes evanescent. It follows the theoretical curve,
given by (45), reasonable closely until k,d approaches the
discontinuity at k,d = = /2. Beyond the discontinuity, the
mode becomes spurious. At the propagating spurious mode
cutoff, the imaginary part of k,d becomes zero.

In summary, it is evident that modes of high spatial fre-
quency, generated by a source that would normally attenuate
very quickly with distance away from the source, may, in
the TLM simulation, be represented by spurious modes that
attenuate slowly or propagate without loss. This affects the
simulation in several ways. First, the evanescent field distri-
bution of the source or discontinuity is not correct. Second,
the amount of coupling between physically separated ports
is effected by spurious modes. Finally, the input impedance,
as seen by the source, is affected since the reactance of the
simulated evanescent modes is incorrect.
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V. CONCLUSIONS

In this paper, a general dispersion analysis of 2-D and
3-D TLM networks has been performed. Spurious mode
solutions supported by these networks have been explored.
These modes originate as a consequence of the spatial and
temporal sampling process. As outlined in Section I, there are
four types of spurious modes identified which were further
grouped as high- and low-frequency spurious modes. As the
TLM mesh is only accurate for low excitation frequencies,
temporal filtering can be imposed to suppress high-frequency
spurious solutions. Hence, only the low-frequency spurious
modes pose a problem.

The shunt, series, and condensed nodes were found to
have peculiar static spurious solutions of type 1. As stated in
Section II, coupling to these modes is avoided by not includ-
ing series elements or generators, and assuming initial field
distributions that do not contain the spurious mode solution.
Since the modé structure is linear, harmonic excitation will
not couple into the static spurious solutions.

The 3-D expanded node is equivalent to Yee’s FD-TD
node structure, with the exception that Yee’s scheme has six
independent variable per node and the expanded node has
twelve. Yee’s FD-TD scheme does not support any spuri-
ous solutions which is a consequence of the staggered node
structure. Fortunately, the spurious modes supported by the
expanded node are of type 4 which are easily suppressed by
temporal filtering. Freedom of low-frequency spurious modes
is a strong advantage of the expanded node.

The advantages of the condensed node are that all the
field components are updated at the same time and that the
same location, which facilitates simulation of mixed boundary
conditions and embedded devices [9]. Also, the numerical
dispersion of the condensed node is significantly less than that
of the expanded node [10]). However, the 3-D condensed node
supports low-frequency spurious solutions of types 1 and 3
which can cause distortions in simulations. The origin of the
modes can be traced to an ambiguity of high- and low-order
spatial frequencies which arises due to the symmetry of the
node [12]. Low-frequency spurious modes cannot easily be
suppressed. An investigation into suppressing these modes is
presently being undertaken.
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