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Generalized Dispersion Analysis and Spurious

Modes of 2-D and 3-D TLM Formulations
John S. Nielsen, Member, IEEE, and

Abstract-The general dispersion relations are derived for the
2-D TLM shunt and series meshes and the 3-D TLM expanded

and condensed node meshes. Implicit in the resulting dispersion
relations are both their physical and spurious modal solutions. It
is demonstrated that of the four schemes, only the 3-D expanded

node mesh is free of detrimental spurious solutions.

I. INTRODUCTION

I N terms of numerical dispersion effects, the Transmission

Line Matrix (TLM) method is similar to Finite Difference

Time Domain (FD-TD) and Finite Element (FE) methods

based on approximations of the single curl Maxwell equations.

A review of the numerical dispersion and spurious modes

supported by the FD-TD and FE methods is given by [1] and

[2]. Significant effort has been expended on the development

of spurious free FE algorithms. A recently proposed method

was given by Boyse et al. [3].

The Transmission Line Matrix (TLM) method, originally

developed by Johns [4], is a means of simulating the time

domain solution of electromagnetic fields by a procedure of

recursive calculations that are updated at regular time intervals.

It can be demonstrated that these recursive relations are

equivalent to a finite difference approximation of Maxwell’s

equations [5]– [7].

The work of Brewitt–Taylor and Johns [8] was brought to

our attention by the reviewer, as the original analysis of the

dispersion characteristics of the TLM mesh. A limitation of

this analysis procedure is that an equivalent circuit model of

the TLM node is required. As a practical equivalent circuit

model for the 3-D symmetrical condensed node has not been

developed, the general dispersion relation was not derived

except for special cases such as propagation along the axis

or diagonal [9]. The general dispersion relation was later

derived by Nielsen and Hoefer [10], which further led to the

characterization of spurious modes of the condensed node [1 1].

In this paper, a method is described which enables the dis-

persion relation of an arbitrary TLM node to be derived based

on the scattering matrix of the node without the requirement of

an equivalent circuit. This method has been used to evaluate

the dispersion and spurious solutions of commonly used TLM

meshes. In the following sections, the dispersion relation and

spurious modes will be evaluated for the 2-D shunt node,
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II. TYPES OF SPURIOUS

and 3-D symmetrical

MODES

The TLM mesh consists of an array of scattering noales

that are interconnected by transmission line links. Throughout

this paper, the node spacing in all directions is assumed to be

constant and equal to d. ‘The propagation constant along the

transmission lines is ko, which is given by

(1)

where fO is the excitation frequency and vlink is the velocity

along the transmission link lines. The numerical dispersion

of the mesh, at a given excitation frequency, is reduced by

decreasing kod through mesh refinement [9]. As the numerical

dispersion is decreased, the overall field solution will typically

converge to the physical solution. However, due to the spatial

and temporal sampling process, propagating spurious modes

may be supported. These spurious modes will, to some extent,

corrupt the simulated field solution. Various types of spuricms

modes can be identified. These have been arbitrarily classified

under four types for convenience as follows:

Temporal Spatial TLM Mesh Supporting

Type Frequency Frequency Spurious Mode Type

1 0 all 2-D series and shunt

high 3-D condensed

2 kod = m all 2-D series and shunt

low 3-D condensed

3 kod < z/2 high 3-D condensed

high

4 kod >= TJ2 o 3-D expanded

The nature of these spurious solutions will become evident as

examples are given.

Since the TLM method is only accurate for low values of

kod, it is generally not applied to problems where kod exceeds

about 0.25. Hence, low-pass temporal filtering of embedcled

sources can be used to suppress the spurious solutions of

types 2 and 4. Spurious solutions of type 1 can be controlled
by careful attention to initial conditions and placement of

sources and lumped devices within the mesh as will be

discussed further. Type 3 is particularly troublesome and is

unfortunately supported by the 3-D condensed node mesh.
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Types 1 and 3 will be referred to in this paper as “low-

frequency spurious modes.”

III. 2-D TLM SHUNT NODE

The2-Dshunt node sketched in Fig. I(a) canrepresent three

field components, for example, EY, Hz, and H.. The shunt

node is formed by the intersection of two transmission lines

of characteristic admittance Yo. V: and Vp” are defined as the

incident and reflected voltages at the node, where p denotes

the transmission line number as indicated in Fig. 1. Vi and

V’ are defined as the vectors of V; and V;, respectively, as

‘=()“=(!)
Vi and V’ are related through a scattering matrix

V’=sv.

(2)

S as

(3)

S is derived directly from the transmission line equivalent in

Fig. l(a) as

/-1 1 1 l\

The node scattering matrices for the TLM nodes are frequency

independent and therefore applicable to continuous harmonic

signals as discussed in [12]. If the transmission lines are

approximated by lumped inductors and capacitors, as illus-

trated in Fig. l(b), then a set of coupled differential equations

results

(5a)

(5b)

(5C)

where Vy, Iz, and Iz are indicated in Fig. 1(b). Llink and clink

are defined as the inductance and capacitance of the link line

per unit length, respectively. It is readily observed that if the

following equivalences are made:

Ev = –~, Hz = –;, Hz=;,

P. = Llink, & = Zclink (6)

then (4) reduces to Maxwell’s equations for the TE case

where

EZ=EZ=HV=OJ
8

&
=0.

The dispersion relation is based on evaluating the voltage

at a particular node, denoted as node c, in relation to the

voltages of the four adjacent nodes which are at a distance

d from node c. Let V. denote the total voltage amplitude at

node c, and let VJ denote the voltage at the adjacent node

attacked to node c through the transmission line p as shown

#

AV3

Vc p=3

V2A p=2
4 P=4 ~v~

p=l

‘TA
‘b’

+

3

Iz 3 ~,+ .3P

2 L,,nkd/2 L,,nkd/2 4

~lz 2Cnnk d

1

Lt@-

‘bx

z

(b)

Fig. 1. 2-D TLM shunt node. (a) Node structure. (b)
network.
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Equivalent LC

in Fig. l(a). The dispersion relation is based on determining

the interdependence between node voltages V. and V;.
Vi is composed of incident and reflected voltages such that

v; = v;’ + Vp” (7)

where V: is the incident voltage flowing from the adjacent

node, and VD” is the reflected voltage flowing toward the

adjacent node on the pth link line.

The dispersion relation is developed

frequency such that

V; = TOV;’

V;’ = To VP”

where T. is given as

TO = ~–j~.d

where kO is the propagation constanf

at a single excitation

(8a)

(8b)

(9)

along the link lines

defined in (l). Furthermore V’, V“, and VT’ are defined as

vector forms of Vi, V;’, and Vp”’, respectively.

Defining T as

T = TOI (lo)

where I is an identity matrix, we can write

V* = V*i +V*’ = T-l V; +TVr = (T-l +TS)V; .

(11)

Using (3), Vc can be expressed as

(12)

Finally, substituting (11) into (12), we obtain an equation

relating V. to VJ as

4VC Cos(kod) = V( + v; + v: + vi. (13)
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Useful solutions to (13) are obtained by assuming an infinite

2-D mesh where the voltage across the node located at x = id

and z = kd has an amplitude of

~,k = AOe–~kxdie–~kzdk (14)

where kz and kz are the unknown components of the mesh

propagation vector, and AO is an arbitrary constant. By sub-

stituting this solution into (13), the desired dispersion relation

is obtained as

2 cos(k.d) = cos(kcd) + cos(kzd) . (15)

In assuming the solution of the form in (14), monochromatic

excitation of the mesh is implied. The resulting dispersion rela-

tion is thus valid for monochromatic fields but not necessarily

for time sampled fields composed of propagating impulse

functions as is encountered in TLM. However, it can be shown

that if kOd < x, then the dispersion relation is the same for

a monochromatic signal as for a time sampled version of the

monochromatic signal [12].

Equation (15) can be compared to the two known dispersion

relations of the shunt TLM mesh in the direction along the

x- or z-axis and along the diagonal z = .z. Consider first

the case where kzd = O which represents propagation along

the z-axis. Equation (15) becomes

2 cos(k.d) – 1 = cos(kzd) (16)

which can be manipulated into a different form

cos(kzd) = cos(kod) – tan(kod/2) sin(kod) (17)

which appears in [9].

Consider next the case when the propagation is along the

diagonal line z = z by setting kzd = kzd. Using (15),

cos(kod) = cos(kxd) = cos(kzd)

or k. d = Kzd = k.d. Consequently, the effective propagation

constant along x = z is nondispersive and is given by m

which is in agreement with [9].

A final observation is that (15) can also be written in the

form

‘in’(%=+(sin’(%+sin’(w’18)
which is exactly the same as the dispersion relation of the

2-D FD-TD method with a stability factor of l/@ [2]. This

equivalence between the 2-D FD-TD and 2-D TLM method

has also been pointed out by Simons and Bridges [13].

Fig. 2 shows a plot of the dispersion relation (15) for

various values of kod. Note that the curves are approximately

circular for low values of k.d, indicating negligible numerical

dispersion. As k.d increases, the circles become distorted.

When kod reaches (1/2)n, the dispersion curve becomes a
line given by kzd+ kzd = ~. To avoid errors due to numerical

distortion, kod is typically limited to less than 0.25.

Although spurious solutions in (15) are not evident, they do

exist. Consider a shunt node surrounded by four conducting

walls. Assume an incident voltage at the node given by

~ = [1, –1, 1, –l]T. From (3) and (4), V“ = –~. As

Ilk
\

0.6

0,4

0.2

0
0 0.2 0.4 0.6 0.8 1 1.2

Fig. 2. Plot of the numerical dispersion of the shunt node for various values

- of k~ d.

the reflection coefficient of the conducting boundary is

V; does not change in the next time interval. Hence,

case corresponds to the eigensolution of k%d = k. d = r

.—1,
this

iUl d
k.d = O, which is a type 1 spurious mode. This solution was

not predicted by (15) since Vc = O, which can be seen by

considering (12).

To obtain the complete dispersion relation, the eigenmatrix

equation for V; is derived. Assuming a solution in the form of

(14) and using the port designations in Fig. l(a), V“’ can be

related to ~ through a transformation matrix P as follows:

Vrf = pvi (19)

with

‘=(;$ ;. ‘[ i’)

where T. = exp( –jkxd) and Tz = exp( –jkz d). Also,

v“* = TVT = TSVi . (20)

By combining (19) and (20), an eigenmatrix relation is ob-

tained as

(P - TS)ti = O (21)

with the corresponding dispersion relation given as det [P$ –

t] = O, as S = S-l. Equation (21) can be written to highlight

the eigenvalue To as

PSVi = TOVi .

Hence, the solutions of kod are related directly to the eig,en-

values of the matrix PS. A plot of the eigenvalues of

PS is shown in Fig. 3 for all real values of kmd and kzd.

There are generally four unique eigenvalues. There is always

an eigenvalue at To = 1 and To = – 1 corresponding
to kOd = O and kOd = n, respectively. These solutions

correspond to spurious mode types 1 and 2, respectively. In

addition, there are solutions of the form To = exp( –jd) and

TO = exp(jO), with 9 being real which correspond to the

solutions of kod given by (15). These are called the “physical

solutions” in Fig. 3. The eigenvectors of Vi corresponding to
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Fig. 3. Physical and spurious eigen-solutions of the shunt node in the Z’o
plane.

the eigenvalues TO = +1 depend on kZ d and kZd such that

Vf+V~+V/+V~ = Oand, hence, Vc = O.V’ = [1, –1, 1, –1]
given above is an example Qf the eigen vector for T. = 1.

There are no spurious modes of types 3 and 4.

Since the TLM network is linear, only sources that excite

frequency components corresponding to kOd = O or kOd = r

can couple into the spurious modes supported by the shunt

node. As high-frequency excitation is avoided by bandlimiting

sources, only dc sources can pose a problem. Sources that

shunt the node will not couple to the dc spurious mode due

to symmetry arguments. However, sources placed in the series

into the link lines can potentially couple to the type 1 spurious

mode.

IV. 2-D TLM SERIES NODE

The 2-D series node is sketched in Fig. 4(a) and can

represent three field components of TM modes, namely, Ez,
E., and Hy [9]. The series node is formed by a series

connection of two intersecting transmission lines of admittance

Y. resulting in a node scattering matrix of

If the transmission lines are approximated by

ductors and capacitors as illustrated in Fig. 4(b),

of coupled differential equations emerges as

(22)

lumped in-

then a pair

(23a)

(23b)

(23c)

where Iy, Vz, and V’ are indicated in Fig. 4(b). If the following

equivalences are made:

Hy = :, E= = –~, Ez = ~,

U = z~link j &z,z = clink> (24)

3

J-

t

M

‘vi

4

x

t

(a)

L,ink d/2

I;’”’d”

L
L,,”k d/2

L,,nk d/2

2 ‘=: ‘x ciinkdf24uLll”k d/2 x

clmkd/2

1
L

z

(b)

Fig. 4. 2-D TLM series node. (a) Node structure. (b) Equivalent circuit.

then (23) reduces to Maxwell’s equations for the TM case

with

HZ= HZ= EV=O; ~=0.
ay

The derivation of the dispersion relation for the series node

is similar to the derivation followed for the shunt node. The

current at the center of a series node c is related to the currents

at the center of the four adjacent nodes as illustrated in Fig. 5.

At the center of the adjacent nodes, the currents are denoted

as J~ where again p denotes the link line number. Ic is the

value of the current flowing around the center series node in

the direction indicated in Fig. 5. J’, defined as the vector of

J;, can be written as

J’ = YO(Vi’ – V“’) . (25)

Hence,

J’= Y.(T-l – Z’S)Vi . (26)

The current 1. can be written in terms of V: and V; as

I= Yo(v; –v:)=:(vi –w; –v:+w:) , (27)

Introducing (26) in (27) yields

41CCOS(kOd) = (Jj – J; – J: + Jj) . (28)

As for the shunt node, the desired dispersion relation is

obtained by assuming a solution of the form

I~,h = AOe
–jk. die–jk. dk (29)

Substituting this solution into (27) results in the dispersion

relation

2 cos(k.d) = cos(kzd) + cos(k,d) (30)
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Fig. 5. Variables used in the derivation of the dispersion relation of the 2-D

series node.

which is identical to the dispersion relation of the shunt node

in (15).

As for the shunt node, there are additional spurious modes

that are not visible by the dispersion relation. For example,

consider the case with a series node surrounded by magnetic

walls and an incident voltage vector of Vi = [1,1,1,1]. As

observed, this results in a self-consistent solution yielding

1. = O. This solution is predicted from the eigenvalues and

eigenvectors of PS as in the shunt node case resulting in the

same set of four eigenvalues at +1, exp(jO) and exp(–jd),

where @corresponds to the values of kOd obtained from the

dispersion relation (30).

V. EXPANDED 3-D TLM NODE

Akhtarzad and Johns [14] arranged the TLM series and

shunt nodes in an interlaced arrangement resulting in the 3-D

expanded node as illustrated in Fig. 6. The term “expanded” is

used since the evaluated field components are not collocated.

Each cell of the expanded node consists of three shunt nodes

representing the Ex, EY, and E3 fields and three series nodes

representing the Hz, Hg, and Hz fields. The spacing between

the series and shunt nodes is d/2, and the overall cell size

is d. The incident voltages converging on the shunt nodes

are scattered at interval time steps, and the incident voltages

converging on the series nodes are scattered half a time step

later. Hence, the E and H fields are not updated at the same

time but at half-time step intervals as in Yee’s FD-TD scheme

[15]. It was demonstrated by Johns [5] and by Voelker and

Lomax [6] that the expanded TLM node is analogous to

Yee’s FD-TD node, except that the expanded node has twelve

independent variables associated with each node, whereas

Yee’s scheme has six.

As discussed by Paulsen [1], Yee’s 3-D FD-TD scheme

[15] is free of spurious solutions. This is a somewhat sur-

prising property, which is attributed to the staggered mesh
configuration. The additional variables associated with the

expanded TLM node result in supported spurious modes as

will be demonstrated. However, these spurious modes are of
type 4 which can be easily suppressed by temporal filtering.

The expanded node does not support low-frequency spurious

modes of types 1 or 3. This is an important advantage of the

Hy

w
fz

VX, EX

“Y’ EY

/1 I

‘kx

2

Fig. 6. 3-D TLM expanded node indicating location of sampled field

quantities.

expanded node over the condensed node which does support

the propagation of low-frequency spurious modes.

Two derivations of the dispersion relation were per-

formed—one based on the voltages at the shunt nodes and the

other on the currents at the series nodes. As these derivations

are similar, details will only be given for the voltage based

dispersion relation. Both approaches result in the same overall

dispersion relation. By considering both derivations, it willl be

shown that there are no low-frequency spurious modes.

The voltages of the expanded node, V., VY, and Vz, are

represented at the three shunt nodes of the unit cell, as shown

in Fig. 6. The three series nodes of the expanded node are

shown in Fig. 7 with xl, X2, X3, X4, yl, y2, y3, y4, Zl, .Z2,

23, and 24 defined as the voltages associated with these nodes.

The initial step of deriving the dispersion relation is to write

the voltages Vz, VY, and V, at the shunt nodes, in terms of

the voltages of surrounding series nodes to which they are

connected. Using (13) and referring to Fig. 7, the following

relations are obtained:

v. = CO(–.Z3TY – y3T=-1 – .31 – yl) (31a)

Vv = CO(x3Tz-1 – z2Tz-1 + Z1 – Z4) (31b)

V. = C.(YZTZ-l +X4+ Y4 + Z2TY) (31C)

where

co= 1
4 Cos(%$)

Next, consider a single series node connected to four surround-

ing shunt nodes with V as the vector of the port voltages at

the series node center, and V’ as the vector of node voltages

at the ends of the interconnecting lines (at the center of the

shunt nodes). Define Vi as the vector of voltages incident at

the series node centre. Consequently,

v’ = (z+ + Ts) vi (32)

where S is the scattering matrix of the series node and T is

given as before with To redefined as

TO = ~–~ . (33)
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Equation (32) yields

V = (1+ S)Vi = (1+ S)(T-l +TS)-%’ = QV’

(34)

where Q is given by

‘=co(! :1:0 ‘3’)

The relations generated by the three series nodes are then

()”Q(vi!’)(36a)

() ’Q(:)

(36b)

()””(<’1)

(36c)

By combining (31) and (36), an eigenmatrix equation is

obtained as

()

v.

A VY =0. (37)
Vz

The eigenmatrix A is a 3 x 3 matrix with entities ail given

by

all = (73(12 + 2CY + 2CZ) – 1

alz = 4C~T~i2T~12SZSY

als = 4C~Tj12Tz–112Sz Sz

az~ = 4C~Tz-1/2Tv–1/2 SzSY

azz = C~(12 + 2CZ + 2CZ) – 1

azs = 4C~T~~2TZ–~12SYSZ

as~ = 4C~TZ–~12T~12SZSZ

asz = 4C~T~~2T~12SVSZ

ass = C3(12 + 2CZ + 2CY) – 1 (38)

where

c. = Cos(kzd) Cv = Cos(kgd) c= = Cos(kzd)

S. = sin(k3d/2) S, = sin(kVd/2) SZ = sin(kZd/2) .

Consider the case where only one electric field component,

namely, the Em field (or Vz), is nonzero. Consequently, the

eigen value equation reduces to all = O such that the

dispersion relation becomes

4cos(kod) = 2 + Cos(kvd) + Cos(kzd) . (39)

For the special case where kyd = O, (39) reduces to the

dispersion relation given in [9] for propagation along the axis.

X4

T
tell

C%x Q

Y

x x L z

(a)

Y4

Y1 I

‘A

Y2

(b)

-
23

IY3

%’

I‘2

Y

L
‘x

(c)

Fig. 7. Definition of variables used in derivation of dispersion relation of

the 3-D expanded node. (a) Hz series node, (b) HV series node, and (c) Hz
series node,

The dispersion relation was derived again based on the

currents 12, Ig, and Iz at the series nodes. A similar procedure

was followed resulting in the eigenmatrix equation

()
I.

AT IY =0

Iz

(40)

where A is given in (38).

The eigenmatrix equations based on the shunt and series

node approaches in (37) and (40) do not reveal any low-

frequency spurious mode types. However, as with the shunt

and series nodes, this is not a sufficient condition for the

absence of spurious modes. However, the voltage and current

based dispersion relations can be used to demonstrate that there

are no spurious modes by the following argument.

First, as the voltage dispersion relation of (37) describes

no spurious modes, any spurious modes that exist must be

characterized by Vz, VY, and Vz all equal to zero, such that

(37) does not apply. Second, as the current dispersion relation
of (40) describes no spurious modes, 1., Iv, and 1, must all

be zero for (40) not to apply. Combining these statements,

additional spurious modes are characterized by V., Vv, Vz,
Iz, I., Iz, which are all equal to zero. Given this condition,

the port reflection coefficient into the shunt nodes must be

–1 and the reflection coefficients into the series ports must

be 1. Hence, all the interconnecting transmission lines are

effectively isolated with a short circuit at one end and an

open circuit at the other. As the link lines are d/2 long,

self-consistent solutions are possible only if kOd is of the set

kod = n~/2 n=l,3,5, . . . .
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node structure.

Since n = O is not part of the set, there are no low-frequency

spurious modes. However, high-frequency spurious modes

exist for n = 1 and n = 3.

VI. SYMMETRICAL CONDENSED 3D-TLM NODE

One disadvantage of the expanded node is that the six field

components are not collocated, nor are they updated at the

same time. This makes it difficult to impose arbitrary mixed

boundaries. This motivated Johns to develop a different 3-D

TLM node structure denoted is the “symmetrical condensed

node,” which consists of one central scattering center in each

cube of medium rather than a set of series and shunt nodes as

in the expanded node [16]. The node lattice is a cubic structure

with a node spacing of d. The condensed node, sketched in

Fig. 8, consists of twelve ports that connect to adjacent nodes.

There is no practical lumped element equivalent circuit of the

node itself.

The incident and reflected voltage in port p of the condensed

node is denoted as V; and Vp”, respectively, as before. Vi and

VT, the vector representations of the incident and reflected

voltages, are related through the node scattering matrix S

given by [16]. [See (41) at bottom of page] ‘

The derivation of the dispersion relation for the condensed

node follows a procedure similar to that used for the shunt and

series nodes. An expression is written relating the port voltages

of a particular node in an infinite 3-D mesh, called node c,

and the voltages of the six surrounding adjacent nodes at the

ports directly connected to node c. The dispersion relation

will be based on an eigenmatrix equation developed for Vi,

the voltage incident at the center node. A spatially harmonic

solution for ~ is assumed such that

V;, j,k = Aoe–jkcdz e
–jkydje–jk=dk (42)

when i, j, k are node indices and A. is a constant vector,

Given the node port numbering in Fig. 8, and assuming the

solution in (42), the reflected voltage at the adj scent ports (can

be written as

where P is a 12 x

VT’ = Pv (43)

12 matrix with zero entries except for

P1,lZ = P~,7 = TY-l

P2,9 z P4,13 z TZ-l

p3,11 = P6,1(J = TZ-l

P7,5 = PM>l = TY

P8,4 = P9,2 = T.

PQ6 = &,3 = T%

where Tz = exp(–jk. d), Tv = exp(—jkvd), and T, =
exp( —jkzd). As in the case of the shunt node, the eigenmatrix

equation is given by

(Ps - T)v = o (44)

which is of the same form as (21). Equation (44) can be

simplified for special cases such as propagation along a

diagonal or axis [12]; however, for the general case, no

simplification has been derived.

As for the shunt node, the eigenvalues of PS are explored.

For a given kzd, kYd, kzd there are six unique eigenvalues for

TO that are located on the unit circle as shown in Fig. 9. There

are solutions at ,kOd = O and ,kOd = ~ which correspond to

spurious solutions of type 1 and type 2 as seen in the case of

the 2-D shunt and series nodes. Given that kod is a solution,

then, as indicated in Fig. 9, –k~d, ~ – k~d, and n + k~d are

s=;

01100000 10 –1 0)
10000100 0 –1 o 1
10010001 000–1
001010 –100010

0001010 –10100

01001010 –1 o 0 0

000 –10101010 o
0010–1010 0010
10000 –1000101
o –1-0 o 1 0 1 0 1 0 0 0

–10010001 0001
,01–100000 101OJ

(41)
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Fig. 9. Physical and spurious eigen-solutions of the 3-D condensed node in
the To plane.

also solutions. These four solutions correspond to physical and

spurious solutions.

Insight into the properties of these solutions can be obtained

by considering the problem from another perspective, where

lcOd is given and the possible solutions of the propagation

vector that satisfy the dispersion relation are determined.

Consider the solutions for kind, kvd, and kz d for a small

value of lcOd. The solutions form a sphere with a radius of

approximately 2kOd. Due to the spatial sampling imposed by

the mesh along x, y, and z, the solution to the dispersion

relation is periodic along the kzd-, kvd-, and lczd-axis. That

is, if k~d, kYd, lczd are solutions of the dispersion relation for
a particular kOd, then

kzd+i .2x i=+l, +2,...

kYd+j.2n j=+l, +2,...

kZd+k.2r k=+l,4c2,...

are also solution, Consequently, the solution sphere centered

around kzd = kvd = kzd = O is replicated in a cubic node

pattern with a spacing of 2m. All these solution spheres do not

contribute to spurious modes but are merely a consequence of

spatial sampling. In addition to the above solutions, there is

also a solution sphere centered at kZ d = kY d = k= d = r as

can be observed by finding the roots of the dispersion relation

(44). This represents the spurious propagating mode solutions.

As before, spurious solution spheres exist at intervals of 27r in

kzd, kvd, and kzd, due to spatial sampling. The total solution,

assuming k. d is small, appears as a body-centered-cubic mode

structure as is shown in Fig. 10.

The consequences of spurious solutions can be visualized by

considering an infinite source plane in the zg plane radiating

into an infinite 3-D mesh. Assume that the source plane

generates a plane wave at a single frequency corresponding

to kO, and that it has a transverse dependence of kzx and

kv y. Using the dispersion relation, kzd can be evaluated for

the radiated plane wave. The propagation characteristics of the

radiated plane wave fall into one of four regions as outlined in

Fig. 11. The first region for small kzd and kyd is the “physical

propagating modes” region. The propagating constant, kzd, for

these modes is real and close to the theoretical value of

kzd = J(2 . kOd)2 – (kwd)2 - (kvd)2 . (45)

~d is constant

I&d.
solution spherea

due to spatial

A

?
●.

sampling /’ ,,:\- ‘-1
.-

\

1- -~o
I

;.-: - *2:L :

I
l$d -- --1’ I

m ~ I --

solution sphere o
corresponding to

\

n Zn
kxd

apurioua modes

physicsl solution sphere of radws N 2 kod

Fig. 10. Illustration of the solution spheres satisfying the dispersion equation

k@

t

of the 3-D condensed node.

spurbus
prom~~oJg

/

k

o n kxd

Fig. 11. Spectral regions corresponding to physical and spurious plane wave
mode propagation for the 3-D condensed node.

Assuming an excitation frequency such that k.d is small

relative to m, the boundary of this region is approximately

circular, with a radius of 2 k.d. As kOd increases, the boundary

will bulge slightly around the diagonal k. d = k~ d.

The adjacent region is denoted as the “physical evanescent

modes” region which exhibits a purely imaginary kzd that

increases in magnitude with the modal index as expected

in actual waveguide modes. Near the physical mode cutoff

boundary, the imaginary part of kzd follows (45) accurately,

provided kOd is reasonably small.

The propagation constant for modes that lie along the

diagonal line given by

kzd+ kvd = ~

has a negative infinite imaginary component which indicates
no propagation at all. When crossing this line such that

kzd+kYd>~,

the real part of k. d jumps to n. The modes in this region

are called the “spurious evanescent modes.” In this region, the

magnitude of the imaginary component of k,d decreases as
the mode index increases.

The boundary between the spurious evanescent and spurious

propagating modes is a mirror image of the boundary separat-

ing the physical propagating and evanescent modes, and is

located approximately on the curve given by

2kOd = (n – kzd)2 + (n – kyd)2 . (46)
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Fig. 12. Plot ofkzdas aftmction ofkxdwith kod=0.3andkvd=kxd
[11].

Thespurious propagating modes have a propagation constant

of approximately

kzd = n + ~2kod – (m – kxd)z – (m – kyd)2 (47)

which is purely real, indicating lossless propagation. Note the

constant offset factor of n. The upper sign in (47) denotes

the forward propagating spurious mode, and the lower sign

denotes the backward propagating mode.

Fig. 12 shows the real and imaginary parts of kzd as a

function of kzd for kzd = O to kzd = z, with lqd = kzd.

In this example, kod is chosen to be 0.3. For small values of

kzd, kzd is real until the cutoff point at kzd = 0.42. In the

plot of the real part of /czd, the theoretical solution of (45)

is superimposed and is indistinguishable from the curve given

by the dispersion relation (44). At kzd = 7r/2, the real part

of kzd jumps to a value of = T. At the cutoff point of the

spurious mode, given by

kzd = T – 0.42,

the spurious mode begins to propagate.

Consider next the curve of the imaginary part of Ld

shown in Fig. 12. When kc d exceeds the cutoff point, the

mode becomes evanescent. It follows the theoretical curve,

given by (45), reasonable closely until kmd approaches the

discontinuity at kz d = 7r/2. Beyond the discontinuity, the

mode becomes spurious. At the propagating spurious mode

cutoff, the imaginary part of k,d becomes zero.

In summary, it is evident that modes of high spatial fre-

quency, generated by a source that would normally attenuate

very quickly with distance away from the source, may, in

the TLM simulation, be represented by spurious modes that

attenuate slowly or propagate without loss. This affects the

simulation in several ways. First, the evanescent field distri-

bution of the source or discontinuity is not correct. Second,

the amount of coupling between physically separated ports

is effected by spurious modes. Finally, the input impedance,

as seen by the source, is affected since the reactance of the

simulated evanescent modes is incorrect.

VII. CONCLUSIONS

In this paper, a general dispersion analysis of 2-II and

3-D TLM networks has been performed. Spurious mode

solutions supported by these networks have been explored.

These modes originate as a consequence of the spatial and

temporal sampling process. As outlined in Section I, there are

four types of spurious modes identified which were further

grouped as high- and low-frequency spurious modes. AS the

TLM mesh is only accurate for low excitation frequencies,

temporal filtering can be imposed to suppress high-frequency

spurious solutions. Hence, only the low-frequency spuious

modes pose a problem.

The shunt, series, and condensed nodes were found to

have peculiar static spurious solutions of type 1. As stated in

Section II, coupling to these modes is avoided by not includ-

ing series elements or generators, and assuming initial field

distributions that do not contain the spurious mode solution.

Since the modd structure is linear, harmonic excitation will

not couple into the static spurious solutions.

The 3-D expanded node is equivalent to Yee’s l?ll-TD

node structure, with the exception that ~ee’s scheme has six

independent variable per node and the expanded node has

twelve. Yee’s FD-TD scheme does not support any spuri-

ous solutions which is a consequence of the staggered node

structure. Fortunately, the spurious modes supported by the

expanded node are of type 4 which are easily suppressed by

temporal filtering. Freedom of low-frequency spurious modes

is a strong advantage of the expanded node.

The advantages of the condensed node are that all the

field components are updated at the same time and that the

same location, which facilitates simulation of mixed bcmndary

conditions and embedded devices [9]. Also, the numerical

dispersion of the condensed node is significantly less than that

of the expanded node [10]. However, the 3-D condensed node

supports low-frequency spurious solutions of types 1 and 3

which can cause distortions in simulations. The origin of the

modes can be traced to an ambiguity of high- and low-order

spatial frequencies which arises due to the symmetry of the

node [12]. Low-frequency spurious modes cannot easily be

suppressed. Art investigation into suppressing these modes is

presently being undertaken.
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